1

We can compute the ATET in two ways: (1) by regression and (2) by non-regression. Doing the regression method, we can run the following code:

Table 1:

Table 1:							
	Dependent variable:						
	re78						
treat	1,693.116***						
	(636.608)						
age	56.145						
	(45.190)						
education	401.960*						
	(226.631)						
black	-2,187.164*						
	(1,165.744)						
hispanic	176.173						
1	(1,547.636)						
married	-64.252						
	(857.860)						
nodegree	-20.196						
	(995.018)						
re74	0.102*						
	(0.058)						
Constant	694.617						
	(3,363.693)						
Observations	445						
\mathbb{R}^2	0.055						
Adjusted R ²	0.037						
Residual Std. Error	r 6,507.140 (df = 436)						
F Statistic	3.141*** (df = 8; 436)						
Note:	*p<0.1; **p<0.05; ***p<0.01						

This means, on average, if an individual participates in the NSW program, their income would increase by \$1,693.12, ceteris paribus. Doing the non-regression method, we can run:

```
# Filters treated
treated <- nsw_dw[nsw_dw$treat==1,]
# Filters untreated
untreated <- nsw_dw[nsw_dw$treat==0,]
# Subtracts the mean of treated in 1978 by the mean of the treated in 1978
ATET <- mean(treated$re78)-mean(untreated$re78)</pre>
```

We obtain \$1,794.34. This means, on average, if an individual participates in the NSW program, their income would increase by \$1,794.34, ceteris paribus. From the two results, we expect to find the NSW

program will increase between \$1,693.12 and \$1,794.34 depending on whether exogenous covariates were included in the regression.

2

In order to estimate the propensity scores for the nearest neighbor without replacement, we can run:

To view the distribution of propensity scores for our treated and controls, we can run:

```
plot(m.out, type="hist")
```


We can take a look at our covariate balance by running

```
summary (m.out)
```

Which gives us the following

```
##
## Call:
## matchit(formula = treat ~ age + agesq + agecube + education + educsq + black + hispanic +
      married + nodegree + re74 + re75 + u74 + u75 + interaction1, data = psid_data, method = "near
##
##
      ratio = 1, replacement = FALSE)
##
## Summary of Balance for All Data:
            Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
                   0.6364
                                0.0270
                                                            8.0268
                                                                      0.4816
## distance
                                                 2.1674
                  25.8162
                                34.8506
                                                -1.2627
                                                            0.4696
                                                                      0.2317
## age
```

```
10.3459
                                                         0.4255
## education
                              12.1169
                                             -0.8808
                                                                  0.1091
## black
                  0.8432
                               0.2506
                                             1.6301
                                                                  0.5926
## hispanic
                  0.0595
                               0.0325
                                                                  0.0269
                                              0.1139
## married
                  0.1892
                               0.8663
                                             -1.7287
                                                                  0.6771
## nodegree
                0.7081
                               0.3052
                                             0.8862
                                                                  0.4029
## re74
               2095.5737
                            19428.7458
                                             -3.5471
                                                         0.1329
                                                                  0.4684
## re75
              1532.0553
                           19063.3377
                                             -5.4458
                                                         0.0561
                                                                  0.4695
##
            eCDF Max
           0.8817
## distance
## age
             0.3771
## education 0.4029
## black
            0.5926
## hispanic
             0.0269
## married
             0.6771
## nodegree
             0.4029
## re74
             0.7292
## re75
             0.7736
##
## Summary of Balance for Matched Data:
            Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## distance
                  0.6364
                               0.2934
                                             1.2200
                                                        1.4702
                                                                  0.0432
                 25.8162
                              30.4811
                                                         0.4149
## age
                                             -0.6520
                                                                  0.1196
## education
                10.3459
                             10.3784
                                             -0.0161
                                                         0.4745
                                                                  0.0407
                             0.7568
## black
                  0.8432
                                             0.2379
                                                                  0.0865
## hispanic
                  0.0595
                               0.0649
                                             -0.0229
                                                                  0.0054
## married
                0.1892
                               0.4595
                                             -0.6901
                                                                  0.2703
## nodegree
                 0.7081
                               0.6216
                                             0.1902
                                                                  0.0865
## re74
               2095.5737
                            4499.8428
                                             -0.4920
                                                         1.1020
                                                                  0.0722
## re75
                                             -0.5195
                                                         0.7389
              1532.0553
                            3204.3968
                                                                  0.0605
            eCDF Max Std. Pair Dist.
##
## distance 0.5568
                           1.2200
## age
             0.1784
                            1.3561
## education 0.0919
                           1.3281
## black
          0.0865
                            0.9515
## hispanic 0.0054
                            0.5257
                           1.0213
## married
          0.2703
## nodegree
            0.0865
                            0.9036
## re74
             0.4162
                            0.8667
## re75
             0.2973
                            0.9044
##
## Percent Balance Improvement:
##
      Std. Mean Diff. Var. Ratio eCDF Mean eCDF Max
## distance
                43.7
                                81.5
                                      91.0
                                               36.9
                      48.4
                                -16.4
                                         48.4
                                                  52.7
## age
                                         62.7
## education
                     98.2
                                12.8
                                                  77.2
## black
                      85.4
                                         85.4
                                                  85.4
## hispanic
                                          79.9
                      79.9
                                                  79.9
                                               60.1
## married
                      60.1
                                         60.1
                                         78.5 78.5
## nodegree
                     78.5
## re74
                      86.1
                                95.2
                                         84.6
                                                 42.9
## re75
                      90.5
                                89.5
                                         87.1
                                                  61.6
##
## Sample Sizes:
##
            Control Treated
## All
              2490
                       185
                       185
## Matched
               185
              2305
## Unmatched
                         0
## Discarded
                0
                         0
```

POLS 5385 - Homework 2 Wei Don Lim

Additionally, we can view our covariate balance graphically.

We can find the treatment effects of our model by running

```
"'`{r}
m_data <- match.data(m_out)

z_out <- zelig(re78 ~ treat + age + agesq + agecube + education +
educsq + married + nodegree +
black + hispanic + re74 + re75 + interaction1,
model = "ls", data = m_data)

x_out <- setx(z_out, treat = 0)
x1_out <- setx(z_out, treat = 1)

s_out <- sim(z_out, x = x_out, x1 = x1_out)

summary(s_out)
"'''</pre>
```

Where we get an average treatment effect on the treated as: \$1,240.86

3

In order to find the nearest second neighbor, we can just change the ratio to 2:

We would get the following propensity score distributions and covariate balance tables:

POLS 5385 - Homework 2

##	Balance Measi	ıres							
##		Туре		M.O.Ur	M	.1.Un	Diff.Un	M.O.Adj	
##	distance	Distance		0.0221	. 0	.7032	2.3075	0.1411	
##	age	Contin.		34.8506	25	.8162	-1.2627	29.9270	
##	agesq	Contin.		1323.5301	717	.3946	-1.4055	966.1595	
##	agecube	Contin.	Ę	54102.2771	21554	.6595	-1.5525	33509.3108	
##	education	Contin.		12.1169	10	.3459	-0.8808	10.8973	
##	educsq	Contin.		156.3161	111	.0595	-1.1515	124.8486	
##	black	Binary		0.2506	0	.8432	0.5926	0.6054	
##	hispanic	Binary		0.0325	0	.0595	0.0269	0.0838	
	married	Binary		0.8663	0	.1892	-0.6771	0.6243	
##	nodegree	Binary		0.3052	. 0	.7081	0.4029	0.5162	
	u74	Binary		0.0863	0	.7081	0.6218	0.2973	
##	u75	Binary		0.1000	0	.6000	0.5000	0.3189	
##	re74	Contin.	1	19428.7458	2095	.5737	-3.5471	7134.7230	
##	re74sq	Contin.				.6013	-4.6362	113933126.0256	
##	re75	Contin.	1	19063.3377	1532	.0553	-5.4458	4946.0516	
##	re75sq	Contin.	54821	13776.7900	12654750	.3741	-9.5578	46744924.8194	
##	interaction1	Contin.	24	18073.3675		.7265	-3.9233	79251.6218	
##	interaction2	Binary		0.0036	0	.0324	0.0288	0.0162	
##			_	Diff.Adj					
##	distance		7032	1.9042					
	age		8162	-0.5745					
	agesq		3946	-0.5768					
	agecube	21554.		-0.5702					
	education		3459	-0.2742					
	educsq		0595	-0.3508					
	black		8432	0.2378					
	hispanic		0595	-0.0243					
	married		1892	-0.4351					
	nodegree		7081	0.1919					
	u74		7081	0.4108					
	u75		6000	0.2811					
	re74	2095.		-1.0312					
	re74sq	28141411.		-0.7519					
	re75	1532.		-1.0605					
	re75sq	12654750.		-0.6084					
	<pre>interaction1 interaction2</pre>	22898.	0324	-0.9819 0.0162					
##	Interactions	0.	0324	0.0102					
	Sample sizes								
##	-								
	All	2490	185						
	Matched	370	185						
	Unmatched	2120	0						
π#	omma o chied	2120	U						

With an average treatment effect on the treated as \$1,360.43.

4

R does not have a package to perform the kernel matching method yet. Instead, I will use inverse probability weighting, which is similar to kernel matching. We can run

```
'''{r}
N <- nrow(nsw_dw_cpscontrol)
psid_data <- psid_data %>%
mutate(d1 = treat/pscore,
d0 = (1-treat)/(1-pscore))
```

POLS 5385 - Homework 2 Wei Don Lim

```
s1 <- sum(psid_data$d1)</pre>
s0 <- sum(psid_data$d0)</pre>
psid_data <- psid_data %>%
mutate(y1 = treat * re78/pscore,
y0 = (1-treat) * re78/(1-pscore),
ht = y1 - y0)
#- Manual with normalized weights
psid_data <- psid_data %>%
mutate(y1 = (treat*re78/pscore)/(s1/N),
y0 = ((1-treat)*re78/(1-pscore))/(s0/N),
norm = y1 - y0)
psid_data %>%
pull(ht) %>%
mean()
psid_data %>%
pull(norm) %>%
mean()
#-- trimming propensity score
psid_data <- psid_data %>%
filter(!(pscore >= 0.9)) %>%
filter(!(pscore <= 0.1))
N <- nrow(psid_data)</pre>
#- Manual with non-normalized weights using trimmed data
psid_data <- psid_data %>%
mutate(d1 = treat/pscore,
d0 = (1-treat)/(1-pscore))
s1 <- sum(psid_data$d1)</pre>
s0 <- sum(psid_data$d0)</pre>
psid_data <- psid_data %>%
mutate(y1 = treat * re78/pscore,
y0 = (1-treat) * re78/(1-pscore),
ht = y1 - y0)
#- Manual with normalized weights with trimmed data
psid_data <- psid_data %>%
mutate(y1 = (treat*re78/pscore)/(s1/N),
y0 = ((1-treat)*re78/(1-pscore))/(s0/N),
norm = y1 - y0)
psid_data %>%
pull(ht) %>%
mean()
psid_data %>%
pull(norm) %>%
mean()
```

This gets us an estimated treatment effect on the treated of \$401.07 for non-normalized weights and \$1,681.21 for normalized weights.

5

As I used nearest neighbor to second nearest neighbor to inverse proportional weighting, I was able to get closer and closer to the ATET that was estimated in the first part of the assignment. I used the original covariates and the model of the original paper.